

Available online at www.sciencedirect.com

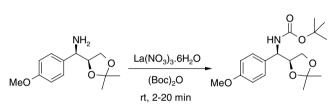
Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8039-8042

Facile *N-tert*-butoxycarbonylation of amines using La(NO₃)₃·6H₂O as a mild and efficient catalyst under solvent-free conditions^{$\Leftrightarrow, \Leftrightarrow \Leftrightarrow$}

N. Suryakiran, P. Prabhakar, T. Srikanth Reddy, K. Rajesh and Y. Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India


Received 3 August 2006; revised 6 September 2006; accepted 15 September 2006

Available online 4 October 2006

Abstract—Facile *N-tert*-butoxycarbonylation of amines is described by the treatment of various primary, secondary, benzylic and aryl amines with di-*tert*-butyl dicarbonate in the presence of catalytic amounts of $La(NO_3)_3 \cdot 6H_2O$ under solvent-free conditions at room temperature to afford *N-tert*-butylcarbamates in excellent yields. © 2006 Elsevier Ltd. All rights reserved.

Functional group protection/deprotection strategies are central to target molecule synthesis. The protection of amines is one of the most fundamental and useful transformations in organic synthesis, especially in peptide synthesis.¹ Among the protecting groups for amines, *N-tert*-butoxycarbonylation² is used frequently, because N-tert-butylcarbamates are stable in the presence of a wide range of nucleophiles under alkaline conditions and are very labile under mild acidic conditions liberating the parent amine.^{1a} Although, various base mediated methods are available for the preparation of N-tertbutylcarbamates using di-tert-butyl dicarbonate,3-11 there are only a few reports on the Lewis acid catalyzed reactions such as, 'Yttria-Zirconia' which needs long reaction times 3-48 h¹² and, very recently, ZrCl₄, copper(II) tetrafluoroborate, InBr₃ and HClO₄-SiO₂ (Scheme 1).¹³

In the course of our on-going search for chemoselective reagents, our group has identified La(NO₃)₃·6H₂O as a mild and efficient catalyst for the chemoselective tetra-hydropyranylation of primary alcohols,¹⁴ chemoselective deprotection of acetonides,¹⁵ synthesis of quinazolinones¹⁶ and the mild and efficient acetylation

of alcohols, phenols and amines with acetic anhydride.¹⁷ It has been observed that substrates containing other acid labile functional groups such as acetonides, TBDMS ethers, isopropylidene protected diols and *N-tert*-butylcarbamates were intact in the presence of $La(NO_3)_3$ ·6H₂O. Further, we report here that $La(NO_3)_3$ ·6H₂O is a mild and efficient catalyst for *N-tert*-butoxycarbonylation of amines using di-*tert*-butyl dicarbonate under solvent-free conditions.

The reaction of aniline (1 mmol) with di-*tert*-butyl dicarbonate (1.2 mmol) using La(NO₃)₃·6H₂O (5 mol %) at room temperature rapidly gave the corresponding *Ntert*-butylcarbamate in a 100% yield (Table 1, entry 1). This success encouraged us to extend the generality of the reaction. In order to establish the scope of the catalytic activity of La(NO₃)₃·6H₂O, we carried out the reaction of various primary, secondary, benzylic and aryl amines (Table 1) with di-*tert*-butyl dicarbonate, which gave the corresponding *N*-*tert*-butylcarbamates in excellent yields. Furthermore, it was observed that when the

Keywords: La(NO₃)₃·6H₂O; Amines; *N-tert*-Butoxycarbonylation; Solvent-free conditions.

 $^{^{*}}$ Reactions using lanthanum(III) nitrate hexahydrate paper 5.

^{☆☆}IICT Communication No. 060904.

^{*} Corresponding author. Tel.: +91 40 27193167; fax: +91 40 27160512; e-mail: luchem@iict.res.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.09.081

Entry	Substrate	Product ^a	Time (min)	Yield ^b (%)
1	NH ₂		2	100
2	NH ₂	NH O	2	98
3	Ph_N_NH ₂		3	95
4	NH 0		2	100
5	O ₂ N	O ₂ N N O	3	95
6	NO ₂ NH ₂		3	98
7	H ₃ C NH ₂	O ₂ N H O	3	98
3	CH ₃ NH ₂	CH ₃ H N O	2	100
)	HONH	HO	3	98
10	NH HN	HO HO () () () () () () () ()	3	98
1	Ph_N	Ph N O C $HS N O C$ $S N O C$	3	98
2	HS S N NH2			

Table 1 (continued)

Entry	Substrate	Product ^a	Time (min)	Yield ^b (%)
13	OH H O		3	99
14	H ₂ N NH ₂	$H_2N \qquad H_{5} \qquad H_{5} \qquad H_{15} \qquad H_{15$	2	98
15	NH ₂ N Ts	H N Ts	10	98
6	O NH ₂ NH ₂		11	95
7	MeO O	HN O MeO	5	99
8			20	95
19	H ₂ N N ⁻ N COOH	Ph Ph Ph COOH	20	96
20	H_2N N N Ph H_2N N Ph O Ph	Ph	15	98
21		\searrow_{O}^{O} \bigvee_{N}^{N} \bigvee_{N}^{N}	15	99

(continued on next page)

Table 1 (continued)

Entry	Substrate	Product ^a	Time (min)	Yield ^b (%)
22	NH NH		10	99
23	HONNH2	HO	05	98
24	F NH ₂	F N O V	05	99
25	COOMe NH ₂		05	99

^a All compounds were characterized by ¹H NMR and EIMS spectral data.

^b Isolated yields after column chromatography.

diamines were subjected to *N-tert*-butoxycarbonylation, a mono-*N-tert*-butylcarbamate was formed in a very good yield (entries 10 and 14). The *N-tert*-butylcarbamate is stable under the reaction conditions for 3-6 h at room temperature. From these results (Table 1) it is evident that La(NO₃)₃·6H₂O is an excellent catalyst for *N-tert*-butoxycarbonylation of amines under solventfree conditions.

Typical experimental procedure: To a mixture of amine (1 mmol) and di-*tert*-butyl dicarbonate (1.2 mmol) was added finely powdered La(NO₃)₃·6H₂O (5 mol %) and the reaction mixture was stirred under solvent-free conditions at room temperature for an appropriate time (Table 1). After completion of the reaction as monitored by TLC, water was added to the reaction mixture and the product was extracted into ethyl acetate (3×20 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a crude product, which was purified by silica gel column chromatography to afford the corresponding *N-tert*-butylcarbamate.

Acknowledgements

The authors are thankful to the CSIR, DOD and DBT, New Delhi, India, respectively, for the financial support and to the Director of Indian Institute of Chemical Technology, for his encouragement.

References and notes

1. (a) Green, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis; John Wiley & Sons: New York, 1999;

(b) Raghavendra, N. S.; Kumar, B. P.; Longquin, H. Tetrahedron Lett. 2006, 47, 389.

- Ravinder, K.; Reddy, A. V.; Krishnaiah, P.; Ramesh, P.; Ramakrishna, S.; Laatsch, H.; Venkateswarlu, Y. *Tetrahedron Lett.* 2005, 46, 5475.
- (a) Grehn, L.; Ragnarsson, U. Angew Chem., Int. Ed. Engl. 1984, 23, 296; (b) Grehn, L.; Ragnarsson, U. Angew Chem., Int. Ed. Engl. 1985, 24, 510; (c) Burk, M. J.; Allen, J. G. J. Org. Chem. 1997, 62, 705.
- 4. Einhorn, J.; Einhorn, C.; Luche, J.-L. Synlett 1991, 37.
- 5. Guibe-Janpel, E.; Wakselamann, M. J. Chem. Soc., Chem. Commun. 1971, 267.
- 6. Guibe-Janpel, E.; Wakselamann, M. Synthesis 1977, 772.
- 7. Itoh, M.; Hagiwara, D.; Kamia, T. Tetrahedron Lett. 1975, 16, 4393.
- 8. Kim, S.; Lee, J. I. Chem. Lett. 1984, 237.
- 9. Barcelo, G.; Senet, J.-P.; Sennyey, G. Synthesis 1986, 627.
- (a) Basel, Y.; Hassner, A. J. Org. Chem. 2000, 65, 6368; (b) Darnbrough, S.; Mervic, M.; Condon, S. M.; Burns, C. J. Synth. Commun. 2001, 31, 3273.
- 11. Pandey, R. K.; Dagade, S. P.; Upadhyaya, R. K.; Dongare, M. K.; Pradeep, K. Arkivoc 2002, 2, 28.
- 12. Chakraborti, K. A.; Sunay, V. Org. Lett. 2006, 8, 3259.
- (a) Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishne, P. R. *Tetrahedron Lett.* 2004, 45, 6963; (b) Chankeshwara, S. V.; Chakraborti, A. K. *Tetrahedron Lett.* 2006, 47, 1987; (c) Chakraborti, K. A.; Sunay, V. Synthesis 2006, 2784; (d) Chakraborti, K. A.; Sunay, V. Org. Biomol. Chem. 2006, 4, 2769.
- Reddy, T. S.; Ravinder, K.; Suryakiran, N.; Narasimhulu, M.; Chinni Mahesh, K.; Venkateswarlu, Y. *Tetrahedron Lett.* 2006, 47, 2341.
- 15. Reddy, S. M.; Reddy, Y. V.; Venkateswarlu, Y. Tetrahedron Lett. 2005, 46, 7439.
- Narasimhulu, M.; Chinni Mahesh, K.; Reddy, T. S.; Rajesh, K.; Venkateswarlu, Y. *Tetrahedron Lett.* 2006, 47, 4381.
- Reddy, T. S.; Narasimhulu, M.; Suryakiran, N.; Chinni Mahesh, K.; Venkateswarlu, Y. *Tetrahedron Lett.* 2006, 47, 6825.